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I. INTRODUCTION

Consider a perfectly conducting surface S placed in free space and
illuminated by an incident electromagnetic field. The problem is to find
the surface density J of electric current induced on S. A solution for J
can be obtained by writing the electric field integral equation on S and
then numerically solving this equation by means of the method of moments.
This solution is called an E-field solution. E-field solutions have been
applied to a rectangular bent plate [1], a surface of revolution [1]-[5}.
and a surface of arbitrary shape [6].

These E-field solutions are reasonably accurate in the resonance region.
The resonance region is the range of frequencies for which the maximum di-
mension of the surface S is of the order of a wavelength. Unfortunately,
an erroneous change in the slope of the radialiy directed electric current
density near the center of a conducting circular disk of radius 0.02)A was
reported in [5]. Here, A is the wavelength. For the dual problem of the
circular aperture of radius 0.02\ in an infinite conducting plane, an er-
roneous change in the slope of the radially directed magnetic current
density appears near the center of the aperture in [7, Fig. 6d]. 1In the
E-field solution of [5], the erroneous change in the slope of the radially
directed electric current density is more pronounced for the disk of radius
0.002) than for the disk of radius 0.02A.

In general, all the E-field solutions in [1]-[6] begin to lose
accuracy somewhere in the Rayleigh region and become worse as the frequency
decreases. The Rayleigh region [8] is the range of frequencies for which
the maximum dimension of S is much smaller than the wavelength. These E-

field solutions fail in the low frequency portion of the Rayleigh region
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as shown by the following reasoning. When the frequency is sufficiently
low, the magnetic vector potential contributions to the elements of the
moment matrix are insignificant compared with the electric scalar poten-

tial contributions. As a result, the magnetic vector potential contri-

butions are lost. The remaining scalar potential contributions depend
only on Vs * J. Here, Vs +Jis the surface divergence of J. Knowl-

edge of VS * J is not sufficient to determine J. Therefore, the E-field

solutions in [1]-[6] fail in the low frequency portion of the Rayleigh

T P‘.A » o

region.

ey

It may be possible to obtain reasonably accurate values of J in the
low frequency portion of the Rayleigh region in the following manner.
Usually, there is at least one frequency that is high enough such that
one of the E-field solutions for J in [1]-[6] is accurate but low enough
such that J can be approximated by the first term of its Rayleigh series.
The Rayleigh series for J is its low frequency expansion in non-negative
integer powers of the frequency [8]. If there is such a frequency, the
first term of the Rayleigh series for J can be extracted from one of the
E-field solutions in [1]-[6]. Knowledge of the first term of its Rayleigh
series amounts to knowledge of J in the low frequency portion of the Rayleigh

region.

In many cases, it is of interest to obtain not only J but also the
scattered field. The scattered field is the electromagnetic field pro- ;
duced by J. In the resonance region, knowledge of J alone is sufficient to
calculate the scattered field because the density q, of electric charge
associated with J can be calculated from the equation of continuity .

Vv «J .

s
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In (1), w is the angular frequency. However, in the low frequency portion
of the Rayleigh region, knowledge of both J and 9 is required in order to
calculate the scattered field because q, can not be accurately calculated
from J by means of (1). Accurate calculation of q, from J by means of (1)
is usually not possible in the low frequency portion of the Rayleigh region,
as shown by the following reasoning. Usually, J approaches a solenoidal
vector function as the frequency approaches zero. As a result, VS *Jis
so small that it can not be accurately calculated from J. Therefore,
accurate calculation of q, from J by means of (1) is usually not possible
in the low frequency portion of the Rayleigh region. However, q, can be
obtained in the same way that J was obtained in the preceding paragraph.

In the manner described in the previous two paragraphs, any one of
the E-field solutions [1]-[6] for J can be extended into the low frequency
portion of the Rayleigh region. The problem of the perfectly conducting
surface S illuminated by an incident electromagnetic field in the low
frequency portion of the Rayleigh region can be solved by other methods.
For instance, the first term in the Rayleigh series for J can be obtained
by solving a magnetostatic problem, and the first term in the Rayleigh
series for q, can be obtained by solving an electrostatic problem. 1In
most of the literature on low frequency electromagnetic scattering,
Rayleigh series are constructed for the electric and magnetic fields
rather than for the electric current and electric charge. For example,
see [9]-[13].

In this paper, a new E-field solution is presented for the electric
current J and the electric charge 9, induced on the perfectly conducting

gsurface S immersed in an incident electromagnetic field. In general, S
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consists of several surfaces that are disjoint from each other. Some of
these surfaces may be open and others may be closed. The new E-field
solution is similar to the E-field solutions in[1]-[6] because it is a
moment solution of the electric field integral equation on S. However,
the new E-field solution uses different expansion and testing functions.
In the new E-field solution, the expansion functions consist of two sets
of vector functions. The first set of vector functions is a suitable
basis for expanding the magnetostatic current. The magnetostatic current
is the first term in the Rayleigh series for J. The second set of vector
functions is such that the electric charges associated with them form a
suitable basis for expanding the electrostatic charge. The electrostatic
charge is the first term in the Rayleigh series for 9, The testing
functions in the new E~field solution are similar to the expansion func-~
tions. These expansion and testing functions render the moment matrix
well-behaved as the frequency approaches zero.

So constructed, the new E-field solution should give accurate values
of J and q, throughout both the Rayleigh region and the resonance region.
Numerical results were obtained for conducting disks of radii 10'15A and

lsk and 0.02)X. Each disk is

0.02)\ and for conducting spheres of radii 10~
excited by a plane wave propagating perpendicular to the plane of the disk.
Each sphere is excited by a plane wave. These numerical results agree well

with the known solutions for the electric current and electric charge on a

small disk [14] and a sphere [15, Eq. (6-103)]}.
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II. THE MAGNETOSTATIC CURRENT AND THE ELECTROSTATIC CHARGE

Since some of the expansion functions for the new E-field solution
will form a suitable basis for expanding the magnetostatic current and
the surface divergences of the rest of the expansion functions will form
a suitable basis for expanding the electrostatic charge, it is helpful to
establish integral equations for the magnetostatic current and the electro-
static charge. Such integral equations can be obtained by substituting
Rayleigh series for J and E}nc into the electric field integral equation.

The electric field integral equation is [4, Eq. (12)]

1 _1 _inc
“n Ekan(g) T Eian on § (2)

where the subscript tan denotes the component tangent to S. In (2), nis
the impedance of free space, and E(J) is the electric field due to J in

free space. This field is given by [16, Sec. 2.1]

EW) = -inlk ” J(r')G(z-r')ds' + %\7” (V) + 3(x"))6(x-r')ds"] (3)
S S
where
o iklzr'|

Gl-r') = e (4)

In (3), k is the wave number, ds' is the differential element of area at

r' on S, V; * is the surface divergence on S with respect to the coordi-

nates of r', and r is the position vector of the point at which E(J) is

c

evaluated. In (2) gi“ is the incident electric field. The incident elec-

PPy Py

tric field is the electric field that would exist if S were absent.

The Rayleigh series for J is

3= ] K™ (5)
n=0
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(n)

where J is independent of k. It is assumed that the surface S on

which J resides is the union of Q surfaces S SZ"" S_. which are

1’ Q

disjoint from each other.
Q
s=1{J s (6)
=1 1
In (6),\U denotes union. The surface Sq may be either ~pen or closed.

If Sq is closed, then it has no edges. 1If Sq is open, it has an edge

called C . 1It is assumed that Cq consists of Rq closed contours

{qu: r=1,2,... Rq}.
Rq

c = Cc &)
¢ X ar

"

Since no line charge can accumulate on qu, J must satisfy

q=1,2,...Q
Je*uy =0 onC , (8)
b ar r=1,2,...R
q
where Eb is the unit vector tangent to Sq and normal to qu. It follows
from (5) and (8) that
) , -
J y =0 on qu 9
and
1y, -
J w =0 on qu (10)

The ranges of values of q and r in (9) and (10) are the same as in (8).

Similar boundary conditions hold for g‘z), 5(3),... but will not be used.

The Rayleigh series for Einc is

o0
la_inc - z kn.E(n) an
n=0
where E(n) is independent of k. The expansion of G(r-r') in powers of

k 1is

S T
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n!

G(r-r') = 4—1,T
n

Il t~

0

In view of (5) and (12), substitution of (3) and (11) into (2) yields

, @ n-1 . n-m~1
D) (=1) ” |£-£'|“'m'2 i(m)(z')ds':]tan

b n=1 m=0 (n-m-1)!
S
. © n+l n-m+1
+ L z K" Siil—————-v Igfgfln-m v! °J(m)(r')ds' =1
4 L A (n-m+1)! s s - — n

S

(12)

(13)

where VS is the component of V tangent to S. The operator Vs is called

the surface gradient on S.

Equation (13) implies that the coefficient of k" on the left-hand side

of (13) is equal to the coefficient of k" on the right-hand side of (13)

for n=-1, 0, 1, 2,... . Setting to zero the coefficient of 1/k on the

left-hand side of (13), we obtain

vl . i(O)(_E")
v JJ S 7 ds' =0 on S
5 |x-r'|

S
In view of (6), (14) implies that

(14)

()]
vt e 3@an
JJ s ds' = ¢V oy 5> 971,2,...Q (15)

where {C(Oq)} are unknown constants. We set S = Sq, =1, and W = J

in (A-1) and take advantage of (9) to obtain

JJ vie 3@ et =0, =1, 2, ...

S
q

The electric charge associated with g(o)(z') by means of (1) is called

q(o)(g')-

PRy W P S LY S ¥ mad Lo P S G S Y

(0)

(16)
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Now, (15) states that each of the surfaces {Sq} is charged to a constant

potential whereas (16) states that there is no net charge on any of the

surfaces {Sq}. In this case, it is well-known from potential theorv that

0 .
q( )(5') must vanish evervwhere on S. As a result, the magnetostatic cur-

(0)

rent J satisfies

7o 3y 20 on s (133

Setting the constant with respect to k on one side of 113) equnl

to the constant on the other side of (13), we obtain

ra (") (
1 Y ( cp—— 71— ds' = EE?;(E) on S (193

(1)

where eo is the permittivity of free space and q is the electric charge

associated with ki(l)

by means of (1).
vi - g(l)(g')
(r") = - (20)

....Jc

1
q( )

In (20), ¢ = 1/(neo) is the speed of light. If
7xg® <o (21)
then there is a scalar function ¢(1)(r) such that
AR IR (22

and, with the help of (6), (19) will reduce to

ds' = - 0@ - ¢ on s, amiiz,0 @)

where {C(lq)} are unknown constants,
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The following reasoning establishes (21). Substitution of the
Rayleigh series (11) forginc and the Rayleigh series
i b (n)
Lah . (24)
n=0
for the incident magnetic fieldigénc into the Maxwell equation
v XEinc = - jkn E.1nc (25)
gives
I wvox g™ = gn § oD (26)
n=0 =1
Equation (21) is a consequence of (26).
We set S = Sq’ $ =1, and W = i(l) in (A-1) and take advantage of
(10) to obtain f
jJ v e 3 Enas' =0, a=1,2,...0 (27)
S
q
In view of (20), (27) implies that
f (L)
J q '(r")ds' =0, q=1,2,...Q (28)
S
q
Now, the auxiliary equation (28) atones for the unknown constants {C(lq)} in
(23) so that the pair of equations (23) and (28) suffices to determine q(l).

It is evident that q(l) is the electrostatic charge. Accordingly, (23) and

(28) a.e called the electrostatic equations.
Intending to determine the magnetostatic current g‘o), we let W
be a differentiable vector function tangent to {Sq} and integrate over Sq

the dot product of W with the terms proportional to k on both sides of (13)

to obtain

o
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B
0
;! J JJ E(£)°.A( )(L)ds + JJ W(r) * Y¢(r)ds =-% JJ W(r) - E(l)(z)dss q=1,2,...Q
v S S ]
q q 4 (29)
In (29),
0, ,
A0y o [(2ED g (30)
J 4rix-r’
S
and, thanks to (18),
n v; . 1(2)(5')
0= || e oy
Equation (29) will reduce to an equation for i(o) alone if W(r) is chosen
such that
” W(x) « Vo(r)ds = 0, g¢=1,2,...Q (32)
S
q
According to (A-1), (32) will be satisfied if
Vs *W=0 on Sq’ q=1,2,...Q (33)
and
q=1,2,...Q ]
Weuy =0 oncC_ _, (34)
— qar r=1,2,...Rq

If (33) is true, then, according to (B-1), there is a scalar function

u(r) such that

s einiaibnadbbmisniemieani

W(r) =n % Vsu(g) on Sq, q=1,2,...Q (35)

where n is the unit vector normal to S. If (34) is also true, then u(r)

WIPUEY Wy W)

must satisfy

q=1,2,...Q
u(r) = U _onC . (36)
qar qr r=1,2,...R

T QP APy o 4 &

where {Uqr} are unknown constants.




“ In view of (32), substitution of (35) into the right-hand side
b

s of (29) yields

3 Jj o - A @as - 2 JJ @xVu@) « EPas, e=1,2,...0 6D

S S
q q

Application of (C-1) to the integral on the right-hand side of (37) and

subsequent use of (36) give

3 “ wea®gs = - % ” u@ x Ey « n ds
S

S
q q

R
+1 59y ED . ude, q=1,2,...0 (38)
n_- qr - =4

r=1
(o}
qr
In (38), u, is the unit vector tangent to the contour qu. A right-handed

screw would advance in the direction of n when turned in the direction of EPR

It is evident from (26) that

= - jn ﬂ(o) (39)

Application of Stokes' theorem [17, Eq. (42) on p. 489] to the integral
over qu in (38), subsequent use of (39), and division of both sides of

(38) by j give

R
” w2 - ” wi® nds - Iy ” 1O . nds, q=1,2,...0
S s =1 Vg 1
q q qr (40)
In (40), Sqr is a cap surface over the contour qu. On Sqr’<ﬂ is the unit

vector normal to Sqr' The direction of n on Sqr is related to the direction




T T YT,

of u, in (38) by the right-hand rule stated prior to (39).

2
Equations (35), (C-1), and (36) transform the left~hand side
of (40) to
f ©) 5 RO
- un-+7xAds+ )1 U LA * u,d’f
i - =1 ar j; - %
) ’ C
q qar

Stokes' theorem [17, Eq. (42) on p. 489! transforms the above expressien

to
R ¢ N
- “ un s 7x (O)ds + %y ri n -V Am"ds
1 - - =y ¥ ) ’
S S
q ar
Therefore, (40) becomes
[ (0) (0) R f (0) (0)
jju@e VAT ke BT ds = U f (e T AT e B ds,
P r=1 4
S S
q qr g=1,2,...Q (41)

In (41), u is any differentiahle scalar function that reduces to the arbi-
trary constant Uqr on the contour qu for r = 1,2,...Rq. Now, (41) can be

valid for all such functions u onlyv if

m

‘ 0
-n J ‘A_( ) =n - H- on Sg' ,{:}_‘2, Q (Z‘Z)
C _y o )
. or (N q=1,2,...0
- J; noe ?>1A(O)ds = poeoH )ds, (43
n A .0
g < 1r=1,h, Rq
qr qr

Since A(O) is given bv (30), the pair of equations (42) and (43)

(m

helps to determine J . [Fquations (9) and (18) state that there is no

(O). We believe that (9), (18), (42) and

(0

(43) uniquely determine the magnetostatic current .J

electric change associated with .
Accordinglv, these

equations are called the magnetostatic c¢yuations.

12
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Equation (9) is true because no line charge can exist. Equation (18)
is similar to [11, Eq. (1.80)]. Equation (42) is a statement of the well-
known fact that the normal component of the total magnetic field is zero on
a conducting surface [11l, Eq. (1.90)]. Equation (43) can be more directly
obtained in the following manner. The line integrals over qu of the terms

proportional to k on both sides of (13) are
. o) , . 21 (1)
J J A Y e + J Ve Ezdg"n J E

C c c
qr qr qr

u, dR (44)

(0)

where A and ¢ are given by (30) and (31), respectively. Since qu is aclosed
loop, the second integral on the left-hand side of (44) vanishes. Appli-
cation of Stokes' theorem [17, Eq. (42) on p. 489] to the remaining inte-
grals in (44), subsequent use of (39), and multiplication by j give (43).
Equation (43) is not commonplace because, as will be shown, (43) is
necessary only if Sq is open and is bounded by two or more closed contours
{qu}. If Sq is not open, then it is closed and therefore not bounded by
any contour. Consequently, there are no surfaces Sqr so that (43) is
absent. If Sq is open and is bounded by one closed contour qu, then Sql
is identical to S . As a result, (43) is redundant because it can be obtained

by integrating (42) over Sq. If Sq is open and is bounded by Rq closed con-

tours {C__, r=1,2,... R_} where R_ > 2, then
qr q q —

Rq
s = S (45)
q r\=j1 qr

As a result, the integral of (42) over Sq is the sum of equations (43)
for r=1,2,... Rq. In this case, (43) must be enforced for Rq-l values

of r. At first glance, there appears to be more surface area on the




e

right-hand side of (45) than on the left-hand side. However, portions of
surface area with oppositely directed normal vectors cancel each other on

the right-hand side of (45) so that (45) is true.

III. CONSTRUCTION OF THE NEW E~-FIELD SOLUTION

The new E-field solution is a moment solution to the electric field
integral equation (2). The new E-field solution is constructed bv expanding

the electric current J as
Tmo.om .m B
1= Mgl 7€ 1% kp, JS (46)

where g? and g; are vector functions that are on S and are tangent to S.
According to (6), S consists of the surfaces {Sq}. For convenience, g?

is chosen to be non-trivial only on Sq for q equal to the single value

m(j). Similarly, g; is chosen to be non-trivial only on se(j)' Furthermore,

(0)

{g?} is a suitable basis for expanding the magnetostatic current J and

{Vs . J?} is a suitable basis for expanding the electrostatic charge q(l).
Neither g? nor g? is allowed to depend on k. The magnitudes of g? and g;

should be comparable with each other. Because of (8), g? must satisfy

. Jrj=l,2,. N
Ji cuw =0 oncC -, {q=m(j) (47)
3 b qar LF=1’2"..R .
m(j)
and g§ must satisfy
e i=1,2, ..Ne
J, *u =0 onC s =e(}) (48)
R ar 3=1(g .. .R
b4 b e(j)
In view of (18), g? must also satisfy
LS m ' = i= . 4
Vs gj(s_) 0 on Sm(j)’ j=1,2,.. Nm (49)

P
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In (46), I? and I? are unknown coefficients to be determined. In
general, these coefficients will depend on k. The scale factors {koj} in
(46) are for later convenience. Here, pj is a length so that kpj is
dimensionless. The exact value of Oj is not critical. However, the order
of magnitude of pj should be that of a dimension of S. It ié evident from
(46) that the expansion functions for J are
{g‘Jf‘ y 3=1,2,... N} (50a)
and
{kojg‘j2 v 3=1,2,... N} (50b)
In analogy with the above expansion functions, testing functions
W, i=1,2,... N } (51a)
and
{kpig: , i=1,2,... N} (51b)

are introduced on S. Both E? and E: are tangent to S. E: is chosen to

e . s
be non-trivial only on Sm(i)' Ei is chosen to be non-trivial only on Se(i)'
Neither E? nor E: is allowed to depend on k. The magnitudes of EE and H:

should be comparable with each other.

The testing function E? is chosen to satisfy

E? *u = 0 on Cm(i),r’ i=1,2,... Nm (52)
and E: is chosen to satisfy
e _ _
Ei u, = 0 on Ce(i),r’ i=1,2,... Ne (53)

Moreover, {Vs . E:} should be a suitable set of testing functions for the
electrostatic equation (23). Unfortunately, {E?} can not be a suitable

set of testing functions for the magnetostatic equation (42) because (42)

PN W W VNS N W G SO G
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is a scalar equation. However, taking a cue from (49), we require that

v, W@ =0 on s i=1,2,... N (54)

m(i)’
where Vs * 1is the surface divergence with respect to the coordinate of r.

Thanks to (54) and (B-1), there are scalar functions {ui} such that

_q‘;‘(g) =axV ouw(, i=1,2,... N (55)

Furthermore, {E?} are chosen such that if an expansion for EKO) in terms
of {g?} is entered into (40) by means of (30), then enforcement of (40)
for W successively equal to each member of {Hg} determines the coefficients
in the expansion for i(o).

The symmetric product of two vector functions is defined to be the
integral of their dot product over S. 1If (46) is substituted into (3) and

if (3) is subsequently substituted into (2), then the symmetric products of

(2) with each of the testing functions (51) form the matrix equation

r o

7™ zme " [
= (56)
Zem Zee “fe "76 ]

In (56), ?m is the column vector of the coefficients {I?} in (46), and ?e

is the column vector of the coefficients {I?} in (46). Also, me, Zem, Zme,

and Zee are submatrices whose ijth elements are given by

mm _ . . [ v oMoy !
zij = jk JJ ds E?(g) IJ ds Jj(E.)G(E r') (57)
Sm(1) Sm(3)
Se(1) Sm(4)
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me _ . 2 . v 1€yt !
Zij = Jkpy JJ ds Ez(z) JJ ds gj(z_)G(z_g )
Sm(1) Se(3)
+ ip. JJ ds wm(r) « ¥ f{ ds' (V' - J?(r'))G(r—r') (59
j -1 /) s i -
Sm(1) Se(3)
2%¢ = k0. 0. JJ ds WS(r) - J[ ds' JS(x")G(r-r")
ij - i’ =i = ) =g - - -
S . S ..
e(i) e(3)
+ jko.p, f( ds WS(r) + ¥ { ds' (V' » IS (r-1") (60
S /. .
e(i) Se(3)
m >e . .
Moreover, V and V are column vectors whose ith elements are given by
m_ 1 ( inc
v =2 h W o+ E s (61)
Sm(i)
kp .
e _ i e  pinc
Vi =5 JJ Ei E ds (62)
Se(i)
In the transition from (2) to (57) - (62), it was permissible to omit the
subscript tan because E? and Ei are tangent to S.
Thanks to (A-1), (52), and (54), (59) reduces to
2 = 5%, (J ds Wi(r) -+ [J ds' J5(r"6(-r") (62
1] i S St TR

Sm(1) Se ()

In view of (53), application of (A-1) to (60) vields

ee _ 3 e . r" v (€ et
Zys = k7040, JJ ds W, (1) ] ds® I, (r )G(r-r"}

Se(1) Se (1)

e f v, e ot
- jkoipj JJ ds(V_ « W (r)) jf ds' (V! ij(p'))C(g r'e
S (Fne

Se(i) (i)




(C-1) give

becomes

<
u
1

e

Sn(i)

where Ki

Sn(i)

is the value of u, on C
r i

” u (7 x E) - n

Equation (25) reduces (67) to

Vi = gk ” ui(gi"c . n)ds - jk

R)

Saey = U

r=1

CERE VR A A S Sy

m({i),r’
to the line integral in (66) gives

Rmii)

r=1

Sm(i),r

1 Rmgi)

r=]1
Cm(i),r

It follows from (52) and (55) that u, is constant on Cm(i),r'

inc
Kir J E

& Substitution of (55) into (61) and subsequent application of

f u B e u)at  (65)

Hence, (65)

Caci),r

inc
w o

Sm(i),r

affect the value (68) of V? because, according to (45),

Application of Stokes' theorem

*nds

It is evident from (55) and (61) that addition of a constant to u

should not affect the value of VT. Addition of a constant to u, does not

If some linear combination of the {ui} were equal to a constant, then the
corresponding linear combination of the {EE} of (55) would be zero. In this

case, the matrix of the superscripted Z's on the left-hand side of (56) would

. u,dl  (66)

©

(68)

N

i

(69)
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bg singular. To avoid a singular matrix, thg {ui} should be chosen so that
no linear combination of theﬁ is equal to a constant.

donstruction of the new E-field solution is now complete. The new
E-field solution for J is given by (46) where the coefficients {I?} and {Ii}
are the elements of the column vectors I" and 1° that satisfy (56). The
ijth elements of the submatrices me, Zem, zme’ and z°¢ in (56) are given by

(57), (58), (63), and (64), respectively. The ith elements of the column

vectors V" and V° in (56) are given by (68) and (62), respectively.

IV. LOW FREQUENCY BEHAVIOR OF THE NEW E-FIELD SOLUTION

If the wave number k is sufficiently small, the elements of me, Zee,

Vm, and V& in (56) are proportional to k whereas the elements of 2" and z"°
are proportional to kz., As a result, (56) is well approximated by the pair

of equations

o™ o yme (70)
. Zeeo'fe = Veo (71)

whenever k is sufficiently small. Here, meo, vmo’ zeeo’ and veo are the

low frequency limits of me, Vm, Zee, and Ve, respectively. From (57),

(68), (64), and (62), we obtain

e
R R | = = a2

Sn(1) n(3)

(0) () 0)
Vi = gk ” u (B ¢ n)ds - Jk f K, ” 'Y vnds (73)
sm(:l) sm(i),r
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‘t eeo e ( ' Vé ) %§(£') .
\ 245 T 7 3kesP; ” dstVy 4D JJ T F 7o
F . : S g LN
[ e(i) “e(3)
- kp

eo _ i e , .(0) ,

Vi = ” Wwe e EV ds (75)

Se(i)
(0) (0) . 1 : . s i
where E and H have been extracted from the right-hand sides of (11)

and (24), respectively.

Later in this Section, it is shown that (70) is the matrix equation
that appears in a moment solution for the magnetostatic current g(o). It
is also shown that (71) is the matrix equation that appears in a mcoment

1

solution for the electrostatic charge q Presumably, the matrix equaticns
for the magnetostatic current and the electrostatic charge can be sclved
easily. If this is true, then the matrix equations (70) and (71) can be
solved easily. Hence, the matrix equation (56) can be solved easily when the
frequency is low, and the solution will tend to give rhe magnetostatic cur-
rent and the electrostatic charge.

A moment solution for the magnetostatic current i(o) is now con-
structed. The matrix equation that appears in this solution will be (70).

)

In view of (30), (40) is an equation for J Upon substitution of jkg?

for W and m(1) for q, (40) beccmes

ik ” W a@ge = 5k “ ui_l_{(o) * n ds

i n :
Sm(1) Sm(1) :‘
m(i) )
Sik] K “ W .nds, i=1,2,...8_ (76)
r=1 S
m(i),r

where uy is a scalar function that satisfies (55) and Kir is the value

of u, on Cm(i).r' If the expansion

A AA M e Y_:_a _s_sm =
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is inserted into (30) and if (30) is substituted into (76), then equa-

tions (76) will form the matrix equation

i L L (78)

Here, me is the column vector of coefficients {I?O} in (77). 1In (78), the
elements of 2" and V'° are given by (72) and (73), respectively. As
expected, the matrix equation (78) for e is the same as the matrix equa-~
tion (70) for Tm.

A moment solution for the electrostatic charge q(l) is now con-~

structed. The matrix equation that appears in this solution will be (71).

Substitution of the expansion
N
(1) i ¢ .eo e
q (") == § I p (V! - J2(x")) (79)
Cj=1 ] ] s ]

into the electrostatic equation (23) and integration of the product of

; e
(23) with -(kpi/n)VS W, over Se(i) produces

e . . vy 3y
ey b 15y [ ascr, i [ e et
J= -
Se (1) Se()
ko
.1 (1) I
= IJ ¢ (r) VS ﬂi(g) ds
Se(i)
ko C(1,e(i))
i e . _
+ v, + Wi(r)ds, 1=1,2,...N_ (80)

Se(i)

Yy K W 1 IS A e ‘!‘._".h_ 2 PR Y r——

Iy
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Thanks to (53) and the divergence theorem [17, Eq. (42) on p. 503], the
second integral on the right-hand side of (80) vanishes. Next, (A-1l) is
applied to the first integral on the right-hand side of (80), and then (22)
is used to replace the resulting V¢(1) by fg(o). In view of these con-
siderations, equations (80) form the matrix equation
,€€0 Feo _ eo (81)

-

Here, 1%° is the column vector of the coefficients {I?o} in (79). In
(81), the elements of 2% and V©° are given by (74) and (75), respectively.
As expected, the matrix equation (81) for feo is the same as the matrix equa-

tion (71) for Te.

V. APPLICATION TO A SURFACE OF REVOLUTION

If the surface S is a surface of revolution, suitable expar.sion
functions {gg} and {kpjgg} for the new E-field solution can hbr iuistiv.sed
by taking linear combinarions of the expansion functions {JiJ; and {ggj}

defined by [5, Eqs. (2) and (3)]

Tl(t) j=1,2,...P-2
Jt = u p ejn¢ ’ (82)

nj -t n=0,+1,%2,...

P . =1,2,...P-1 .
J¢ =u ~i££1 eJn¢ . . (83)
™) 0y n=0,+1,42, ...

Here, t is the arc length along the generating curve of S, and ¢ is the

azimuthal angle, t and ¢ are orthogonal coordinates on S. u and u, are

_¢

unit vectors in the t and ¢ directions, respectively. Assuming that

tI,t;...t- are points on the generating curve, T

p j(t) is the triangle func-

R
1
Y
.1
ol
-
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3 tion which begins at tj j42°

tance from the axis about which the generating curve is rotated. P, (t)

3

j41° pj

, peaks at t;+1, and ends at t p is the dis-

is the unit pulse function whose domain extends from t; to t is
the value of p at the center of the domain of Pj(t).

To indicate dependence on n, the expansion functions for the new

E-field solution for a surface of revolution are called {Jm.} and {kp,Je }
—nj j—j
instead of {g?} and {kpjgi}. Similarly, the testing functions for the new
e e
- 1
E-field solution are called {E:i} and {kpiEni} instead of {Eﬁ} and {kpiﬂi}.
The superscript m stands for magnetostatic, and the superscript e stands

for electrostatic. In [5], the testing functions are the complex conjugates

Ty Yra. .

of the expansion functions. Accordingly, the testing functions for the new

E-field solution are chosen to be the complex conjugates of the expansion

functions for the new E-field solution,

*
Wi = Tns (84)
e e*
ko, Wo. = ko, J4 (85)

ini

Here, * denotes complex conjugate.

Since Jm. and kp.Je, are linear comfinations of (82) and (83), Jm.
-] J™j] -}
and kpjg:j are proportional to ejn¢. It can be shown that the field due to
jné jné "
any electric current proportional to e is also proportional to e . Hence, .
m e e .
the symmetric products of the fields due to gﬂj and kpjgnj with Egi and kpigpi _
are zero for all values of p except p=n. As a result, the matrix equation (56)
disintegrates into many ''smaller' matrix equations, one for each value of nin (82). :
1
zm zme ™ v ]
n n n n .
= , N=0,%1,%2 ... (86) E
zem 7€ 3e ve 3
n n n n .
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According to (49), the surface divergence of g:j must vanish.
This means that g:j can not have any electric charge associated with

it. In order to construct g:j as a linear combination of the functions

R T v Ty .
ey bt 1‘ -

in (82) and (83), we have to know the electric charges associated with
these functions. The surface density of charge associated with gzj

is called q;j and is given by the equation of continuity.

t 1 g Jt

qnj T -jw s ) -nj (87)

Since g;j is given by (82) and VS' is given by (B-3), (87) becomes

e 1 5 Pag® g
qn- i _-wp ( A - A ) e (88)
b j j+1

where Aj is the distance from t; to t,.,. The surface density q¢ of

i+l nj
electric charge associated with gij is given by
¢ __1 .
qnj =jw vs lnj (89)

wnlch becomes

¢ __-n ing
9hj 3,0 P (t)e (90)

Noting that ng has no electric charge associated with it, we

choose ;
m_ = - 3
ng goj . j=1,2,...P-1 (91) ]
and E
e t :

kp.J =J ., =1,2,...P=2 92
P5J05 = Loj j=1, (92) 1

From (84) and (85), the correcponding testing functions are

- N

W, - igi ,  i=1,2,...P-1 (93) 1

t

e = = -
kpiyOi = 201 , i=1,2,...P=2 (94)

kbt ot ad
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Thus, for n=0, the expansion and testing functions for the new E-field
solution are the same as those used in [5].

Equations (92) and (82) imply that ggj is proportional to 1/k.

However, sz is not allowed to depend on k in Section III. If g:

, de-

)
pended on k, it might be difficult to obtain an accurate numerical solu-
tion to (86) because (86) would not be properly scaled. On the other
hand, ZE? and Z%f are exactly zero so that, for n=0, (86) separates into

two matrix equations, one involving ng, the other involving Zee. In

this case, it does not matter how de is scaled with respect to ng.
In order to calculate Vg from (68), a scalar function Usg must
be found such that
Wy =B % Vg gy (95)
If
h= E¢ X u (96)

0 £ < t]
ty -t _ -
Yo1 T\ "oy b St 2t 47
—Ai t > t,
pi =~ "i+l

Equation (68) was derived to show that VT is proportional to k for small k.

If Einc

is such that the integration on the right-hand side of (61) yields
an expression that is explicitly proportional to k for small k, then (68)
is not necessary. As is evident from [5, Eq. (80)], such is the case for

n=0 and for an obliquely incident plane wave. Thus, for plane wave inci-

dence, the matrix equation [5, Eq. (6)] is adequate for n=0.

A C mo A tal LY./ - . s N A ST P S W) A




If n # 0, it is evident from (88) and (90) that

t ¢ ¢
+ - =
UG ¥ %j%5 " %, 5+1%,54+41 = O
where
ip,
o, = —1L
nj nAj

Therefore, it is suitable to choose

g, = Jt. +q .J¢. -0, J¢ . s
—nj  —nj nj—nj n,j+l —m,jt+l n=+1.+2
+1,%+2,...

The {kpjgﬁj} are defined by

= x0.0%,

e
ko, J.
pj—ﬂJ j—nj

1=1,2, P-
W, = Jt* -0 .J¢f + o J¢* ’ ?
-ni i ni—ni n,i+l-n,i+l 11,42,
and i=1,2,...P-1

e _ o*
ko Wg = kPyd

-ni °

In view of (96), it is not difficult to show that

Ezi =nx vs uni
where
- d -ind
Upg = n Ty0) e

26

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

Since the expansion and testing functions for the new E-field

golution are linear combinations of the expansion and testing functions

used in [5], the elements of the superscripted Zn's in (86) are linear

combinations of the elements of the superscripted Zn's in [5, Eq.

(6)].

Of course, all scalar potential contributions to the elements of the

PR

paa ey

PTG T Yo
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superscripted Zn's in [5, Eq. (6)] must be suppressed from the calculation
of the elements of Z:m, zﬁm, and Z:e. Otherwise, severe roundoff error

's

would occur for small k. Because the elements of the superscripted Zn
in (86) become proportional to k or k2 when k is small, machine underflows

will occur if k is too small. 1In an attempt to avoid underflows, the ele-

ments of the superscripted Zn's in (86) were divided by (%-kAl)z. However,
this normalization only decreases the value of k at which underflows begin

to occur. Unfortunately, as k approaches zero, the increasing disparity

~ Ll T

between the real and imaginary parts of the matrix elements eventually

exceeds the dynamic range of the computer.

- VI. NUMERICAL RESULTS

The new E-field solution was used to calculate the electric cur-
rent J and electric charge 9, induced by a plane wave axially incident on
a conducting circular disk of radius 0.002X and a conducting sphere of
radius 0.002). The magnitudes of these currents and charges are presented
here. The new E-field solution was also used to obtain the current and
charge on a conducting disk of radius IO-ISA and a conducting sphere of

radius 10°1°

L. These currents and charges are not shown here. It suf-
fices to state that they agreed well with the known currents and charges

on a small disk [14] and a sphere [15, Eq. (6-103)]. The new E-field

solution could not be calculated for disks and spheres of radii consider-
ably less than 10-15A because of machine underflows. )
The conducting disk lies in the xy plane. On the disk, the

incident field (E'"C, ui™) is given by ]

-h

ad .
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] B = un (106)
_}nc = - Ey (107)

where u and gy are the unit vectors in the x and y directions, respec-

tively. In this case, J can be expressed as

J cos ¢ +

J = uJ, J, sin ¢ (108)

70

where Jt and J, are dimensionless functions of t. In (108), t is the

¢
distance from the center of the disk, ¢ is the azimuthal angle, u, is
the unit vector in the radial direction, and g¢ is the unit vector

perpendicular to u,. The electric charge q, can be expressed as

qg = %-cos ¢ (109)

where ¢ is the speed of light and q is a dimensionless function of t.

Figure 1 shows IJt] on the disk of radius 0.002A. The symbols

X represent the new E-field solution for lJt . These symbols are
plotted at the center of the disk, at the peaks of the triangle func-
tions {Tj(t)} in (82), and at the rim of the disk. The solid curve is
the known solution for IJtl. -fhis curve was obtained by calculating the
known solution at 31 points equally spaced in t and by drawing straight
lines between them. The first of these points is at the center of the
disk. The last point is at the rim of the disk.

Figure 2 shows |J¢| on the disk. The symbuls X represent the
new E-field solution for |J¢|. These symbols are plotted at the centers

of the pulse functions {P,(t)} in (83). The solid curve is the known

3
solution for |J¢|. This curve was obtained by calculating the known
solution at all of the 31 points mentioned in the previous paragraph

except the point at the rim and by drawing straight lines between them.
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Fig. 1.

0%0021.
solution.

IJ | on the conducting circular disk of radius

The symbols x represent the new E-field
The solid curve is the known solution.
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Fig. 2. |J¢| on the conducting circular disk of radius 0.002\. Q
The symbols x represent the new E-field solution.

The solid curve is the known solution. .
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The known solution for |J¢| approaches infinity as the reciprocal of
the square root of the distance from the rim. Figure 3 shows |q| on the
disk in the same way that Fig. 2 shows |J¢|.

In Fig. 2, the x nearest the rim is 287 higher than the known
value of |J¢| at the corresponding point. In Fig. 3, the X nearest
the rim is 36% higher than the known value of Iql at the corresponding
point. These kinds of errors are to be expected when pulses are used
to expand a function that goes to infinity as the reciprocal of the
square root of the distance from an edge [18].

According to (107), g}“c has no component normal to the disk.

(0)

Therefore, the magnetostatic current J vanishes so that the electric

current J reduces to ki(l) for small k. In Section IV, it was shown

that the new E-field solution for J approaches i(o)

0)

as k approaches

zero. It was not shown that if J vanishes, then the new E-field

solution will reduce to ki(l). The good agreement of the new E-field
solution for J with the known J in Figs. 1 and 2 is fortunate. It is
a pleasure to state that the new E-field solution for J agreed just as

3.

well with the known J on the disk of radius 10-1
The conducting sphere is placed at the origin and is illuminated

by the incident field

The electric current J and electric charge 9, induced on the sphere are
expressed by (108) and (109), respectively. For the sphere of radius

0.002\, Fig. 4 shows |Jt|’ Fig. 5 shows |J¢|, and Fig. 6 shows |[q|. On

LI PO YN, AT e A . P P Ll PO PR Ny S

ne (110)
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Fig. 3. |q| on the conducting circular disk of radius 0.002).
The symbols x represent the new E~field solution. The
solid curve is the known solution.
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Fig. 4. |Jt| on the conducting sphere of radius 0.002\A. The
symbols x represent the new E-field solution. The
solid curve is the known solution.
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Fig. 5. |J¢| on the conducting sphere of radius 0.002A. The
symbols x represent the new E-field solution. The
solid curve is the known solution.
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Fig. 6. |q| on the conducting sphere of radius 0.002)\. The
symbols x represent the new E-field solution. The
solid curve is the known solution.




this sphere, t is zero at (x=y=0, z=-0.002)) and is 0.002m)\ at
(x=y=0, 2=0.002)). As in Figs. 1, 2, and 3, the symbols X in each
of Figs. 4, 5, and 6 represent the new E-field solution and the solid

curve is the known solution.

36

P

1

(PSP

s |

ol

| RSN




—— e

37

P r, Pt}

= APPENDIX A

In Appendix A, it is shown that

JJ WeVpds = - jJ ¢(VS e Wds + j (W . gb)dz (A-1)
S S c

where S is a finite surface, ds is the differential element of area,
Vs. is the surface divergence on S, ¢ is a differentiable scalar func-
tion defined in 3-dimensional space, and W is a differentiable vector
function defined on S. Furthermore, W is tangent to S. The surface S
may be either open or closed. If S is closed, then the second term on
the right-hand side of (A-1) is to be omitted. If S is open, then S

has an edge. This edge consists of one or more closed contours and is

called C. 1In the second term on the right-hand side of (A-1), df is -

the differential element of length along C and is a unit vector tan-

E‘b
gent to S and normal to C. For definiteness u is taken to point away
from S.
The following reasoning is used to show that (A-1) is true.
Because W is tangent to S, the divergence theorem {17, Eq. (42) on
p. 503] for ¢W is
0 , S closed

“ v, + (4W)ds = (A-2)

From [17, Eq. (18) on p. 501], 3

1 ) 9
Vg * (4W) = EIE; [531 (hyoW,) + 3, (hyoW,)] (A-3) -
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where (vl, vz) are orthogonal curvilinear coordinates on §, (hl,

the corresponding metrical coefficients, and (Wl, Wz) are, respectively,

the components of W in the directions of increasing vy and v,.

ferentiating the products on the right-hand side of (A-3), we obtain

Vs OW) =T M4 W T

where

1 ]
V s W=+ [ (W) + 77— (h,W)]
s h1h2 Bvl 271 sz 172

1 3¢ 1 3¢
Vo= u, + - u
hy v, =1 " h, 3v, =2

0

Here, u. and u, are, respectively, the unit vectors in the v, and v,

1 1

coordinate directions. According to (17, Eq. (18) on p. 501], the right-

hand side of (A-5) is indeed the surface divergence of W. From

Eq. (17) on p. 501}, the right-hand side of (A-6) is the surface gradient

of ¢.

Substitution of (A-4) into (A-2) gives

fj W Vgds = - JJ ¢V, + Wyds + J O(W * u,)dL
S S C

Because Vs is the component of V tangent to S and because W is
tangent to S,

W e VS¢ =W+ Ve on S

Substitution of (A-8) into (A-7) gives the desired result (A-1).

h2) are

Dif-
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(A-5)

(A-6)
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(A-7)

(A-8)
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APPENDIX B

In Appendix B, it is shown that any differentiable vector func-

tion W(r) which is tangent to a surface S and which has no surface

divergence can be written as

W(r) = n x Vs¢(£) ,

where n is the unit vector normal to S, Vs is the surface gradient

on S, and
¢(x) = ¢(r) - [
c

In (B-2), 50

any contour on S from x,

The following reasoning is used to show that (B-1l) is true.

The surface divergence of W is called Vs * W and is defined by [17,

Eq. (18) on p. 501]

1.9
V. e W= [z (hW,) +
s hyh, Bv, 21

where (vl, v2) are orthogonal curvilinear coordinates on S, and (h

are the corresponding metrical coefficients.

of W in the direction of increasing v, and W,

the direction of increasing Vo
3 L)

— (-h.W,) = =—

Bvl 271 3v2

(hlwz)

In view of (B-4), the differential form

h,W,dv

1Wadvy - h, W .dv

271772

is exact. Therefore, there is a scalar function ¢(v1, v2) such that

ronsS

(n' x W(')) « dr' ,

is the position vector of an arbitrary point on S, ¢ 1is

tor, and n' is n evaluated at r'.

3

Also, W
is the component of W in

Since W has no surface divergence,
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'\B-l)

ronsS (B-2)

(hyW,)] (8-3)

2

1’ hz) .

is the component

"

1

(B-4)

(B"’S) 1
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h,w, = % ¢(vy,vy) (B-6)

1
21 7 3y, *01V2 -
From (B-6) and (B-7), we obtain
1 93¢ 1 93¢
We=-= u, + = u, (B-8)
h2 sz 1 hl Bvl 2

where (ul, uz) are, respectively, the unit vectors in the directions

of increasing Vi and Vye If the unit vectors (21, 52,‘5) form a right-

handed orthogonal system, then (B-8) can be rewritten as

W=nxVso (B-9)
where
-1 9 1 3% -
Vo hy Bv, 91 + h, ov, %2 (8-10)

According to [17, Eq. (17) on page 501], the right-hand side of (B-10)
is indeed the surface gradient of ¢. Hence, (B-9) coincides with (B-1).

It is evident from (B-8) and (B-10) that

Vs¢ =-nx¥W (B-11)

The desired result (B-2) follows from (B-11).
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APPENDIX C

It is shown in Appendix C that

“ (axV¢) + Eds = - H ¢(VXE) * nds + J ¢(E - uy)d2 (c-1)
S C

where S is a finite surface, ds is the differential element of area,
n is the unit vector normal to S, VS is the surface gradient on S, ¢
is a differentiable scalar function defined on S, and E is a differen-
tiable vector function defined in 3-dimensional space. The surface S
may be either open or closed. If S is closed, then the second term on
the right-hand side of (C-1) is to be omitted. If S is open, then S has
an edge. This edge consists of one or more closed contours and is
called C. In the second term on the right-hand side of (C-1), u, is the
unit vector tangent to C and df is the differential element of length
along C. The direction of n is the direction that a right-handed screw
would advance when turned in the direction of u,.

The following reasoning is used to show that (C-1) is true.

Stokes' theorem [17, Eq. (42) on p. 489] for ¢E is

” ne+Vx ($dE)ds = (c-2)
S $(E - gz)dﬂ , S open
c

0 . S closed

If (vl, V2) are orthogonal coordinates on S and if (gl, Yys n) form a
right-handed system where (21’ g2) are, respectively, the unit vectors

in the directions of increasing vy and Vs then {17, Eq. (166) on p. 497]
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1 ) 9
EF;; (W; (h2¢E2) - R—z— (h1_¢E1)) on S (C-3)

ne+Vx ($E)=

In (C-3), (hl’ hZ) are, respectively, the metrical coefficients associ-

ated with vy and Vs and (El, Ez) are, respectively, the components of

1 and u, directions. Differentiating the products on the right-

hand side of (C-3), we obtain

E in the u

n*Vx @E)=¢(VXxE) *n+@m*xVe)+E onS (c-4)

1 3 1 9
Véd="—s"u +-—5—"u (C-5)
s h1 Bvl 1 h2 sz 2

According to [17, Eq. (17) on p. 501], the right-hand side of (C-5) is
indeed the surface gradient of ¢.

Substitution of (C-4) into (C-2) gives the desired result (C-1).
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